
Improving Oblivious RAM Protocol through
Novel Eviction and Access Strategies

Akiva Gordon and Krishna Suraj
Mentor: Ling Ren

Overview

1. Background
a. Definition of ORAM
b. Previous ORAMs

2. Path ORAM II (Ring)
3. Future Directions

a. Onion ORAM
b. Optimization and Improvement

What is an ORAM?

● Oblivious Random Access Memory
● Trusted client, untrusted server

Desired Specifications:
● All accesses must be hidden
● Ideally a usable product with reasonable runtimes

Why is access pattern important?

● Information can be gained from data access
pattern
o frequently accessed files are considered more

important
o financial data, medical information

Background

a b c d e f

a b c d e f

Encryption:

d c e a f y z b

Goldreich 1987 ORAM

d b c e

a f x y z

Server Client

a c d e f x y z b

x

b

x

Problems with Goldreich Approach

● It’s still very inefficient - complexity O(√N)

● Shuffling is also inefficient

● With large amounts of data, it’s virtually

unusable

Path ORAM Overview

Path ORAM: Access
Stash

Path ORAM: Eviction
Stash

Path ORAM: Overall

● Much more efficient: O(log N)

● Still can be improved...

Path ORAM II: Ring ORAM

Ring ORAM: Overview

● Improvement on Path ORAM

● Improves by:

o Decreasing bandwidth
o Improve eviction quality

Ring ORAM: Buckets

● Use Goldreich Approach:

Path ORAM

Bucket

Ring ORAM

Bucket

D D

Ring ORAM: Access
Stash

D D

D D

D D

Ring ORAM: Eviction

Two Changes from Path ORAM:

● Only evict every Ath Access

● Evict along more efficient path

Optimized Eviction Paths

Our Ring ORAM Results

Z-value: 5 ORAM size: 127

Ring ORAM speed: 0.021916
Final Stash Size: 4

Table of Efficiencies
ORAM Protocol Bandwidth Efficiency

Naive Linear Scan O(N)

Goldreich (1987) O(√N)

Path (2013) O(lg N) (~8 lg N)

Ring (2014) O(lg N) (~3 lg N)

????? O(1)

FUTURE WORK

Onion Oram

Onion ORAM Details

● Breaks log N bound

● Server computation

Onion ORAM: Overview

● Server computes on encrypted data

● How?

o Additive Homomorphic Encryption
o Guaranteed progress of blocks

Onion ORAM protocol

E(0 1 0 0 0 0)

Data!

Onion ORAM layers

● Many layers of encryption

● Bounding layers is key

● Eviction - move all blocks to leaf

Onion ORAM efficiency

● Bandwidth cost: Constant order - O(b)

● Server Computation: O(B λ log N)

● Very Costly!

Optimizations and Improvements

● Onion ORAM multi-eviction

● Skipping layers in eviction phase

● NTRU vs Damgård-Jurik

Acknowledgements
• Our mentor, Ling Ren for his continuous help and guidance throughout the

course of our research

• Professor Srini Devadas for his suggestion of our project and his assistance with

our presentation

• Ethan Zou and Nathan Wolfe for Path ORAM code

• Everyone at MIT PRIMES for the opportunity to conduct world-class research

• Our parents for their support throughout the entire research process

Table of Efficiencies
ORAM Protocol Bandwidth Efficiency

Naive Linear Scan O(N)

Goldreich (1987) O(√N)

Path (2013) O(lg N) (~8 lg N)

Ring (2014) O(lg N) (~3 lg N)

Onion (2015) O(1) constant

