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What is an ORAM? 

● Oblivious Random Access Memory 
● Trusted client, untrusted server 
 
Desired Specifications: 
● All accesses must be hidden 
● Ideally a usable product with reasonable runtimes 

 
 
 



Why is access pattern important? 

● Information can be gained from data access 
pattern 
o frequently accessed files are considered more 

important 
o financial data, medical information 
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Problems with Goldreich Approach 

● It’s still very inefficient - complexity O(√N) 
 
● Shuffling is also inefficient  
 
● With large amounts of data, it’s virtually 

unusable 



Path ORAM Overview 



Path ORAM: Access 
Stash 



Path ORAM: Eviction 
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Path ORAM: Overall 

● Much more efficient: O(log N) 
 
● Still can be improved... 



Path ORAM II: Ring ORAM 



Ring ORAM: Overview 

● Improvement on Path ORAM 
 
● Improves by: 

o Decreasing bandwidth 
o Improve eviction quality 



Ring ORAM: Buckets 

● Use Goldreich Approach: 
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Ring ORAM: Access 
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Ring ORAM: Eviction 

Two Changes from Path ORAM: 

● Only evict every Ath Access 

● Evict along more efficient path 



Optimized Eviction Paths 



Our Ring ORAM Results 

Z-value: 5     ORAM size: 127 
 
Ring ORAM speed: 0.021916 
Final Stash Size: 4 



Table of Efficiencies 
ORAM Protocol Bandwidth Efficiency 

Naive Linear Scan O(N) 

Goldreich (1987) O(√N) 

Path (2013) O(lg N) (~8 lg N) 

Ring (2014) O(lg N) (~3 lg N) 

?????            O(1) 



FUTURE WORK 



Onion Oram 



Onion ORAM Details 

● Breaks log N bound 

● Server computation 



Onion ORAM: Overview 

● Server computes on encrypted data 
 
● How? 

o Additive Homomorphic Encryption 
o Guaranteed progress of blocks 



Onion ORAM protocol 

   
E(0 1 0 0 0 0) 

Data! 



Onion ORAM layers 

● Many layers of encryption 
 
● Bounding layers is key 
 
● Eviction - move all blocks to leaf 



Onion ORAM efficiency 

● Bandwidth cost: Constant order  - O(b) 
 
● Server Computation: O(B λ log N) 
 
● Very Costly! 



Optimizations and Improvements 

● Onion ORAM multi-eviction 
 
●  Skipping layers in eviction phase 
 
● NTRU vs Damgård-Jurik 
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ORAM Protocol Bandwidth Efficiency 

Naive Linear Scan O(N) 

Goldreich (1987) O(√N) 
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